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ABSTRACT
The transverse frequencies of vibration of laminated orthotropic cylindrical

shells were studied in order to compare experimental results with results predicted

by a modified Euler-Bernoulli beam theory. The structures studied had circular

cross sections and were made of graphite/epoxy. Stacking sequence for the test

structures were [90,-603 ,90] and [90,.-453 ,90]. The structures were tested under

clamped-free boundary conditions. Testing was conducted by measuring the

Frequency Response Function (FRF) of the structure after exciting it with an

impulse from a modal hammer. Response was measured using an accelerometer.

Signal processing was done with a digital signal analyzer and FRFs were analyzed

using modal analysis software. The experimental data were used to derive a modal

model of the test structure.

Analytical predictions were made by one dimensionalizing the two dimensional

laminated plate theory equations of motion. Treatment of the test structures as a

beam was justified by investigating the equations of motion of classical shell theory

and making physically reasonable assumptions
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I. INTRODUCTION

With the advent of large flexible space structures renewed interest in the
vibration of shell structures has come about . The governing equations of shell

structures are quite complex. What is required by the practicing engineer are

equations which are both easy to use and give a good representation of the system

being designed. Of interest in this work was determing experimentally if a

homogeneous anisotropic cylinder with a circular cross section could be modelled

analytically as an Euler-Bernoulli beam. The desired results were an equation in

simplified form which would predict the natural frequencies of transverse

vibration.

A detailed computer aided literature search through the Defense Technical

Information Services, Defense Technical Information Center, and the National

Aeronautics and Space Administration lists of references revealed 75 papers

relating to the topic of this work. Further investigation of these papers reduced the

number to twelve papers. Ten of the twelve papers presented analytical results and

the remaining two presented experimental results. However, the two papers which

presented the experimental results were for work done on isotropic materials. A

brief description will be given of the papers described above. It will be seen that a

simplified analytical treatment of shells did not appear in the literature.

Dong, Pister, and Taylor [Ref. 1] presented a small deflection theory to

formulate the equations of motion for laminated anisotropic shells and plates. In

this paper a generalized set of equations is derived which result in eighth order

partial differential equations. In a paper by Dong [Ref. 21 the free vibration of

laminated orthotropic cylindrical shells are treated. In this paper Dong presents an



iterative method which will result in the natural frequencies of the shell. In this

method the solution requires solving for the eigenvalues for an eighth order

system. A more recent work by Dong and Selna [Ref. 31 presents a finite element

approach to the free vibration of shells. This method requires a minimal amount of

computer of time, but does not provide the physical intuitiveness we are seeking.

In a work by Das [Ref. 4] the equation of motion of orthotropic cylindricl shells

again requires the solution of an eighth order partial differential equation. This

paper does not account for arbitrary orientations of layered material. In another

work by Das and Rath [Ref. 5] the vibration of layered shells is considered. In this

work the effect of shear deformation is included. This paper again presents

lengthy higher order differential equations. Papers by Soedel [Ref. 6], Loewy and

Stavsky [Ref. 7], Baker, Bert, and Egle [Ref. 8] present work much along the same

lines as those mentioned above. In short, none of the papers investigated

presented an analysis of shell structures for "back of the envelope calcualtions".

Most recently, work done by Darvizeh and Sharma [Ref. 9] present a new approach

to the determination of the natural frequencies of laminated orthotropic thin

circular cylinders. However, these results also do not have the heuristic

attributes of "back of the envelope calculations".

Experimental work done by Weingarten [Ref. 10] and Bray and Egle [Ref. 11]

give results which correlate well with values predicted by classical shell theory.

However, these results are not directly related to the objectives of this work

because the results are for isotropic materials. To the extent of the literature

searched there exists no published results for the transverse vibrations of

composite tubes.



The study of shells is difficult not only because the governing partial

differential equations are of eighth order, but there is not agreement among

academicians on the correct form of the "classical" shell equations. This perhaps

explains the number of papers on the higher order theory and no papers on a

simplified model of shell structures. Many shell theories exist and carry the

name of the individual who is responsible. Some of these include Donnell,

Flugge, Love, Reissner, Timoshenko, and Vlaslov. An excellent reference which

summarizes the various shell theories of shell vibration and their results is

presented by Leissa [Ref. 12]. For the purposes of this work results given by

Donnell will be used to simplify the treatment of shells.

Current research being done at the Air Force Astronautics Laboratory

(AFAL) at Edwards Air Force Base, California emphasizes the need for simplified

shell equations. The test structures for this work were provided by AFAL. Current

research at AFAL includes the vibration characteristics of thin composite shells

and control of large flexible structures. The understanding of the vibration

characteristics of large flexible structures is critical in order to understand the

problems of control. This need for a simplified treatment of shell structures and

experimental data to support the analytical results was the motivaton for this work.
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II. THEORETICAL BACKGROUND

A. INTRODUCTION
This chapter serves a twofold purpose. First to lay the theoretical groundwork

for the measurement. techniques used in the experiment and secondly, to provide

the background needed to derive the mathematical model of the test structure. For

these reasons the sections following this introduction have been titled Experimental

and Analytical respectively.

In the Experimental section of this chapter, the equations of motion of discrete

mechanical systems will be presented. Both single degree of freedom (SDOF) and

multi degree of freedom (MDOF) systems will be considered. The SDOF systems

analysis was used to derive the equations of motion of vibration measuring

instruments and to understand the uncoupled equations of motion of the MDOF

system. We will derive the modal model of the test structure from our

understanding of MDOF systems analysis.

In the analytical section of this chapter equations of motion for the flexural

vibrations of the structure will be derived. The method used will one

dimensionalize the two dimensional laminated plate theory equations of motion.

In conclusion, the resulting equation will be shown to give a reasonable prediction

with respect to shell theory.

B. DISCRETE SYSTEMS
In vibration analysis we are concerned with determining the mass, damping,

and stiffness characteristics (nodal parameters) of a structure. From this

information we can determine the natural frequencies and mode shapes (also

4



called modal parameters) of a structure. With this information we can fully

describe the dynamic behavior of the structure under any conditons within the

assumptions of the the theory. To study these ch"'-teristics we must begin by

formulating a model which can be applied experimentally. To satisfy this

requirement we begin by modelling the system as a discrete mechanical system. A

discrete mechanical system is a system in which the mass, damping, and stiffness

are lumped into elements. These elements are joined in parallel or series to form

the system. An example of a discrete system is a mass attached to a spring and

viscous dashpot. Figure 1 is a diagram of such a system. In the discrete system,

mass forces are proportional to acceleration (F = mk), viscous dashpot forces are

proportional to velocity (F = -ci), and spring forces are proportional to

displacement (F = -kx). The coefficient m is the mass of the block, c the damping

coefficient of the dashpot, and k the stiffness of the spring. The equation(s) of

motion for the discrete system are then derived from these relationships and

Newton's laws.

The dynamic behavior of discrete systems are described by ordinary

differential equations. Discrete systems are defined by the number of degrees of

freedom they possess. The degrees of freedom of a system are the number of

independent coordinates needed to fully describe the state (motion) of the system.

Discrete systems may be single degree of freedom (SDOF) systems (one

coordinate required) or multi degree of freedom (MDOF) systems (more than one

coordinate required).

Equations of motion for free and forced -esponse of the SDOF and the MDOF

systems will be presented. Free response is subjecting the system to a set of initial

conditions and observing the resultant motion. A powerful method of analysis,

5



modal analysis, will be described and used to study the MDOF system. In this work

only linear systems were considered.

1. Single Degree of Freedom
The simplest SDOF system to study is the undamped mass-spring system.

The undamped mass-spring system is shown in Figure 2. The equation of motion

for this system is

mr + kx = f.

In the absence of an applied force (f= 0), this reduces to the free

response analysis. The new equation of motion is that of the simple harmonic

oscillator.

m + kx = 0

Using complex notation we can show the solution to be of the form

x = Xei4nt,

where X is dependent upon the initial conditions and wn = ,J (k/m), is the natural

frequency of the system.

We now let f s 0 and study the forced response. We will assume f to be

harmonic with frequency w and write f in the following way

f = Feit.

The solution can be shown to have the form

x = Xeiw t.

Substituting the solution into the equation of motion results in the equation

(k - w2 m)Xeiwt = Feiwt.

Cancelling and rearranging terms we arrive at the system receptance frequency

response function (FRF).

X/T = I/(k-WM) .(W)

6



The receptance FRF is the ratio of harmonic displacement to harmonic

excitation. It is interesting to note that the receptance is independent of the forcing

function and only a function of the system characteristics (mass and stiffness) and

forcing frequency. If we had solved the equation of motion using the Fourier

Transform we would have arrived at the result

X/F = 1/( k- w2 m) = H(w),

where H(w) is the system transfer function. This equivalence between the FRF

and the transfer function is very important in experimentally determining the

modal parameters of the system. This relationship allows us to measure the

response signal (via electrical signal from transducers) of the measuring

instruments and from this relationship derive the mechanical properties of the

system.

Other FRF's exist and are related to the receptance. These are the

mobility and inertance. The mobility is the ratio of harmonic velocity to harmonic

excitation. For sinusoidal excitation, the relationship between mobility and

receptance is

Y = X/F = iwa(cw).

Inertance is the ratio of harmonic acceleration to harmonic excitation. Again for

sinusoidal excitation, the relationship between receptance and inertance is

A = X/F 2 - (W).

In this work the inertance was measured to determine the modal parameters. It

should be pointed out that there is no loss of generality in assuming excitations

having sinusoidal forms, because Any periodic function considered can be written

as a Fourier Series and any aperiodic functions considered have a Fourier

7



Transform. For the current investigation of linear systems (principle of

superposition applies), these properties allow us to study vibratory systems in this

manner.

The damped SDOF system is an important case to study because any real

system exhibits some form of damping. Damping introduces energy dissipation and

phase difference bet%'een the output and the input. The equation of motion for the

damped SDOF system is

mrr + d + kx = f.

The damped SDOF system is shown in Figure 3. For f = 0, the equation of

motion reduces to

m + ci + kx = 0.

A solution exists of the form

x = Xe st,

where s is a complex number. At this point a new parameter, C, the damping

factor, will be introduced. The damping factor is the ratio of the damping in the

system to the critical damping coefficient.

C = C/ccrit

The critical damping coefficient is defined as

c = 2 mrn.

With this new parameter the equation of motion may now be written in the

following manner

x + 2'wni + wn2 X = 0.

Substitution of our solution into the new equation of motion leads to an equation

of new form. The new equation is a relationship between s and (. This equation

gives two values of s for each value of C. This equation is written below.

8



s1,2 = [-_"± t ( 2 _ 1) ]cd n

From this equation it can be seen that the parameter " influences the shape of the

solution quite heavily. Four areas of interest exist in the domain of C. These are C

= 0,0 < C < 1, = 1, andC > 1.

For f = 0, the solution reduces to simple harmonic motion. For 0 < C

< 1, s is complex. The real part of s is an exponentially decaying function and the

imaginary part of s is an oscillatory function. Together they form an exponentially

decaying function. This is known as underdamped motion. Underdamped motion

oscillates at the frequency of damped vibration,

wd = (1 _ 2 )w on.

Figure 4 is an illustration of underdamped motion.

For " = 1, s has double roots and the solution of the equation of motion

is

x = (A + Bt)eiwht.

The constants A and B are dependent upon the initial conditions. This case is

known as critical damping. For this case, we see that the systems damping

coefficient is equal to the critical damping coefficient. Generally the system will

tend to the equillibrium position the fastest with critical damping. Figure 5 is an

illustration of the critically damped case.

For C > 1, the system is said to be overdamped. The parameter s is real

and has two distinct values. The resulting motion is an exponentially decaying

response. Figure 6 is an illustration of the overdamped case.

For f o 0, the results are similar to the undamped system. Again we let

the force have the form

f = Feint

9



and assume a solution of the form

x = Xeiw t,

where X is a complex number and contains phase information. The equation of

motion now becomes

(-W2 m + iwc + k)Xeiwt = Feiwt.

This results in the receptance FRF for the damped SDOF system having the form

a(w) = 1/[ (k - 2 m) + i(Wc) ].

With the introduction of damping the FRF now has real and imaginary parts. This

allows us to mathematically represent the phase difference between output and

input. The relationship between the receptance FRF and the mobility/inertance

FRF remain the same as those derived for the undamped case. Using the

parameters ( and wn we can write the receptance FRF in such a way that will help

us analyze vibration measuring instruments. The receptance now takes the form

ct(w) = (1/k)/ {[1- (w/n)2 ] + i(2('wwn)}.

This may be written in complex exponential form as

a(w)= (w) ei',

where

Icd~)I = (1/k)/{[1-(/1-wn) 212 + (2Cw/wn)},

is the magnitude of the FRF and

o(w) = tan-1 {[2 w/1n]/1- (w/wn) 2 ]}.

is the phase angle of the FRF. Figure 7 is a plot of I a(w) I vs ',Io and Figure 8 is

a plot of o vs w/wn.

Defining resonance to be the frequency corresponding to the maximum

amplitude of a(w)j, we see from Figure 7 that the degree of damping is most

10



important in this region. The resonant frequency can be shown to be
'Wr = Wn(l -"2 C 2 )

For w /wn near 1 and C approaching 0, the amplitude of the curve

approaches infinity. Therefore, for light damping ('0), wr is near Wn and a small

input will result in a large output. The phase diagram also exhibits some unique

features. At w/wn = 1 all the curves pass through 900. When C = 0, the curve has

a discontinuity at wo/ n = 1. At this point the phase angle jumps from 00 to 1800.

This means that for values of /w n > 1, the response is in the opposite direction of

the excitation. These characteristics of the plotted FRF are helpful when plotting

results from experimental data.

For damped systems we may define a quantity Q, known as the quality

factor. Q is defined as

Q = Ic(w)Imax.
For lightly damped systems this can be shown to be

Q = 1/2 " = Wr/(W 2 -W 1 )

where w2 and w 1 are the frequencies corresponding to the half power points

(I j/J 2). This definition of Q will help us to determine the damping factor from

experimental data.

Studying SDOF systems allows us to study the characteristics of vibration

measuring instruments. In vibration testing a transducer is used to convert

mechanical motion to a proportional voltage. The voltage signal can then be

processed and displayed to give the experimenter information about the vibrating

system. Signal conditioning and data display will be covered in more detail in the

chapter describing the experiment. There are three basic vibration measuring

instruments. These are instruments measuring accelerations, velocities, or

11



displacements. Force measurements are also done in modal testing. In this work it

was acceleration and force that were measured. These were measured in order to

calculate the inertance of the structure.

To measure acceleration a transducer called an accelerometer was used.

To measure force a transducer called an impedance head was used. Detailed

operation of these sensors will be covered in the next chapter. Here the equations

of motion governing these instruments will be presented.

An accelerometer may be modelled as a SDOF system. The system is a

case containing a mass, viscous dashpot, and a spring. A diagram of an

accelerometer is shown in Figure 9. The equation of motion of an acceletometer is

very similar to that of the forced SDOF system. From Figure 9 it can be seen that

the equation of motion of an accelerometer is

rrz + c + kz = -m"Y.

If we assume harmonic excitation of the base,

y = YeiWt,

and a solution having the form

z = ZeiWt,

we can be show that for small values of w/ n, the acceleration of the mass is

proportional to the case. This means the acceleration of the mass is also

proportional to the acceleration of the test structure. This is how the

accelerometer mechanically measures the acceleration of the test structure. A plot

of I a(w) I of the accelerometer shows the useful ranges of accelerometers. Figure

10 is such a plot. Notice for C = .70, the curve is flat for values of wlwn .3. This

indicates that for an instrument to measure acceleration it must have a damping

factor in the neighborhood of .7. The accelerometer must also have a significantly

12



larger natural frequency than the measured frequency of interest. In fact,

accelerometers do have a damping factor near .70. Accelerometers are made for

many applications and it is their specific application which will dictate the design of

its natural frequency.

2. Multi Degree of Freedom

MDOF sysiems are inherently more difficult to analyze then SDOF

systems. As the number of degrees of freedom increase, the complexity of the

problem increases even more. Despite this complexity, the study of MDOF

systems is important because of their link between experimantal analysis and

theoretical analysis. This can be best demonstrated by considering a continuous

system as the limit of a MDOF system with an infinite number of degrees of

freedom. This relationship is shown by Meirovitch [Ref. 131. In principal the

MDOF analysis can be carried out for a 2-DOF system and the same methods used

can be applied to larger systems. This approach will be used to describe the

methods used in MDOF analysis. However, many systems must be modelled using

more than two degrees of freedom in order to get good experimental data. In this

work the structure was modelled as a six degree of freedom system. Six degrees of

freedom were chosen because measurements could be taken at approximateley

equally spaced intervals along the structure corresponding to both nodes,

antinodes, and points in between for the first five modes of vibration. This model

of the structure resulted in the reciept of good experimental data for studying the

first five modes of vibration. The first three modes are of interest because in many

structures only the first few modes contribute significantly to the motion of the

structure [Ref. 14]. As will be seen later each degree of freedom corresponds

13



to a measurement location. The free response analysis will be presented, followed

by the forced response analysis.

We will begin with the undamped case. Figure 11 is an example of the

undamped 2-DOF system. The equations of motion for this system are:

mx' + (k1 + k2 )x1 -k 2 x2 = 0

m2x 2 -k 2 x1 + (k2 + k3 )x2 = 0

Already the equations of motion have become more cumbersome. Matrix notation

and indicial notation are more compact methods for representing the equations of

motion for MDOF systems generalized for any arbitrary degrees of freedom. For

the remainder of this work these methods will be used to represent the MDOF

equations of motion. In matrix form, the equations of motion are

Mx + Kx = 0.
Where M is the mass matrix, K is the stiffness matrix, X is the acceleration vector,

and X is the displacement vector.

To solve the equations of motion for the MDOF system we will follow

the same procedures as that used for the SDOF system. We will assume a solution

of the form

X = Ueiwt.

Where U is the column vector of the displacement magnitudes. Substitution into

the equation of motion and simplifying results in

K ,W2M = 0.

For this equation to have a nontrivial solution the determinant of this matrix must

be zero.

IK-,2M I = 0

This is the eigenvalue problem.
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The eigenvalues are the natural frequencies of the system. The natural

frequencies are designated wr, where r denotes the rth mode of vibration.

Associated with each eigenvalue is an eigenvector. Here, the notaton for the eigenvector

is Or -

The eigenvector describes the shape of the rth mode of vibration. For

this reason they are also called the mode shape vectors. The eigenvectors can be

shown to be orthogonal with respect to the mass matrix. This orthogonality

property results on the following relationships.

jTMk = Mr

,TK* = Kr

Where T, the modal matrix, is an n x n matrix comprised of the eigenvectors. Mr is

the diagonalized generalized mass matrix and Kr is the diagonalized generalized

stiffness matrix.

The eigenvectors are unique in shape, but not in magnitude. A common

practice in vibration analysis is to mass normalize the eigenvectors. This

normalization is shown below.

Or = (1/J mr)Or

These are called the mass normalized eigenvectors. The new modal matrix, D, is an

n x n matrix comprised of the orthonormal eigenvectors. The modal matrix now

exhibits the following properties.

DTM , = 1

pTK(, = or2

Where 1 is the diagonalized identity matrix and ()r2 is a diagonalized matrix with

the diagonal elements equal to the natural frequencies. Written in this form the

modal matrix becomes a very powerful tool.
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The equations of motion for the forced response of the MDOF system

are:

M + Kx =f.
We let f take the form

-y eiLt.

Where -y is a column vector of force magnitudes. A second look at the equations of

motion reveal that they are coupled. Our goal is to find a method to simplify their

solution. Postmultiplying the X coordinates by the modal matrix D and

premultiplying by each side of the equations of motion by OT, we can uncouple the

equations of motion. The new equations of motion are now

Ir + wr2 'r = Nr,

where 17 r are the generalized coordinates and Nr is the generalized force. We now

have a set of n independent linear ordinary differential equations. These equations

can be easily solved using well known methods. The uncoupling process also

allows the systems to be treated as n uncoupled SDOF systems. That means the

structure being tested in this work may be considered to be six uncoupled SDOF

systems as opposed to one 6-DOF coupled system.

Another important use of the modal matrix is in the derivation of the

FRF for the MDOF system. Following the approach used for the SDOF system

analysis, we assume a solution of the equations of motion. This solution has the

form

X = xeiwt.

This solution yields the result

x = [K-W2M]-lf.

Defining the receptance FRF matrix to be
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ce(w) = [K- 2M]-1,

we can write

X =

The individual elements of the receptance matrix are defined to be,

czij(w) = (xi/f ), fm = 0; m = 1,n; ,,j.

The xi correspond to response location locations. As pointed out earlier the

structure in this work was modelled as a 6-DOF system. As a result there were six

response locations for measurement on each structure. The expression above

represents a similar expression derived for the receptance of the SDOF system.

Solving for the receptance matrix by inversion is not only tedious, but

does not easily reveal the characteristics of the FRF. U&6-ig the modal matrix, we

can show the receptance is

()= ( MT)/(wr2 -W2).

Each term in the FRF may now be calculated using this relationship.

Qij = Z [(r(,i)(rj)]/(wr 2 -W2) = X [(ri)(rej)]/[mr(wr 2 .W2)],

where ri is the ith element of the eigenvector associated with the rth eigenvalue

and r'j is the jth element of this vector. Physically the ith element of the rth

eigenvector is the displacement at the ith response location for the rth mode of

vibration. A common way of writing this is

aij = X (rAij)/(wr 2 -2).

The term rAij is the modal constant. This form of the receptance is used when

extracting modal parameters from experimental data. The same relationships exist

between the receptance and the mobility/inertance as did for the SDOF case.

Analysis of the damped MDOF system is similar to the SDOF system. In

this work a special type of damping called proportional damping was used to
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model the damping characteristics of the structure. With proportional damping the

damping is proportional to the mass matrix or the stiffness matrix or both. In this

work the damping matrix was assumed proportional to the stiffness matrix. This

relationship is shown below.

C =,6K.
Where B is a real constant.

Proportional damping allows the use of the modal matrix to uncouple the

equations of motion. The equations of motion for the free response analysis are

MR+ C + Kx = o.
The damped natural frequencies of the system denoted by rwd 2, are

r&d2 = wr 2(0-Cr 2),

where wr 2 is the undamped natural frequency of the rth mode and 'r is the

damping factor for the rth mode.

The forced response analysis of the structurally damped system results in

the receptance FRF having the following form.

cij = Z [(rOi)(rgj)]/[(kr- W 2 mr) + iwcrI

Proportional viscous damping is unique in the sense the eigenvalues are real and

the mode shapes for the damped system are the same as for the undamped system.

This expression for the FRF was used to extract the modal parameters of the

structure.

Up to now we have not been concerned with the form of the forcing

function in the forced response analysis. The only requirement has been that the

function have a Fourier Transform. The forcing function used in this work will

now be defined and the response analysis will follow. In this work an impact test

was done on the structure. An impact test is done by imparting a force impulse to
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the structure. A force impulse is defined as the time integral of the force.

F' = fFdt

The force impulse is a force of relatively large magnitude occurring over a short

period of time. The definition for F' requires that the integral have a finite value.

As the time interval over which the force acts becomes smaller, the magnitude of

the impulse approaches infinity. Even in this limit the integral must remain finite

on physical grounds. When the magnitude of the impulse is equal to one and the

time interval of the impulse is the infinitesimal time dt, the impulse becomes a unit

impulse or delta function. The delta function is denoted by 6 and has the following

properties

6(t-C) = 0forallt,, C,

f O°,(t- )d = 1.0 0<C < .

With these properties we can multiply any function by S and determine the value of

that function where & is defined. This operation is defined below.

f 0 ' f(t),S(t- )d = f(E)

To describe the response of a system to an impulse the undamped SDOF system

will be used. This approach lends itself to an uncomplicated and very helpful

solution to study when observing the response to impulse excitations. The analysis

of the response to a unit impulse will be followed by the response to an arbitrary

impulse. The structures in this work were excited with an arbitrary impulse. The

frequency response analysis and the time domain analysis will presented. It will be

seen that the computational difficulties encountered in the time domain analysis

are what make the frequency domain analysis much easier to use.

A unit impulse acting on a body will impart to the body an initial velocity

without any significant displacement change. This is seen by considering Newton's
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second law. The force F is equal to m dv/dt, or F dt = m dv. For a unit impulse,

1/m = dv or x(O) = 1/m. Substitution of this initial condition into the equation for

the displacement of the mass-spring system results in the solution

x = (1/wnm) Im{eiw t}.

The response to a unit impulse is called the unit impulse response and is identified

by the symbol h. For a delta of magnitude F' the response is simply

x = F'h.

Given the expression for the response to a unit impulse we can now

determine the response to an arbitrary impulse. We can treat the arbitrary impulse

as series of unit impulses and the response to each impulse as an impulse response

delayed by the amount . Analytically the response is given by the expression

f( )& h(t - C).

A force impulse is shown graphically in Figure 12. Because we are considering

only linear systems the principle of superposition holds. Therefore, we can sum

together all the impulse responses and find the response to the arbitrary excitation.

In the limit as L approaches d , this sum becomes an integral. The response to an

arbitrary excitation is now defined by the integral

10 t f(Q)h(t - ) dC.

This integral is called the convolution integral. To evaluate this integral the

analytical form of the forcing function and the unit impulse response of the system

must be known.

From the analysis of MDOF systems it was found that through the modal

matrix the equations of motion could be uncoupled and treated as n different

SDOF systems. For a MDOF system subject to an arbitrary impulse n different

convolution integrals must be solved. Unless the transformed forcing function is an
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easily integrable function this is an extremely difficult task. However, if we treat

the same problem in the frequency domain, the evaluation of difficult integrals is

replaced by simple multiplication.

Earlier in the SDOF anlysis section the equation of motion for SDOF

system was solved using the Fourier Transform method. The result was a function

called the transfer function. The transfer function was defined as the ratio of the

Fourier Transform of the output to the Fourier Transform of the input. This ratio

is written in the following manner

H(w) = X(w)/F(w).

From this expression we see that the product of the transfer function and the

Fourier Transform (FT) of the forcing function is equal to the FT of displacement.

A relationship exists between convolution in the time domain and multiplication in

the frequency domain. If we begin with the convolution integral and compute its

FT we see that the transform is equal to the product of two functions. One of the

functions is the FT of the forcing function and the other is the FT of the impulse

response. Remembering that the convolution integral is equal to the displacement

x, it can be seen that the FT of the displacement is equal to the product of the FT

of the impulse response and the FT of the forcing function.

F {x} = , {f * h} = X(o) = F(w)H(w)

The symbol {} denotes the Fourier Transform of the expression in

parentheses. Dividing X(w) by F(w) we see that the FT of the impulse response is

equal to the transfer function of the system. It can now be seen that the analysis of

the response of a system to an arbitrary impulse is much simpler in the frequency

domain. The response of an MDOF system to an arbitrary impulse can now be

found by summing together the product of the forcing function and the system
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transfer function for each mode of vibration. This is in fact how the FRF of the

structure is found. Earlier the relationship between the FRF and the transfer

function was shown for an SDOF system. This concept can be further extended to

the n uncoupled equations of motion for the MDOF system.

In impact testing the system response is a decaying sinusoid. Figure 13 is

an example of the response to an arbitrary impulse. During testing of the structure

over 100 impacts were made on the structure and their responses measured. The

form of the exciting function was not known, but with the use of a signal analyzer

its signal was discretized and a discrete Fourier Transform (DFT) of the impulse

found. The DFT of the input will show the spectral characteristics of the impulse.

As will be seen in the Experimental Procedures chapter it is the spectral

characteristics of the impulse which will be used to determine the FRF of the

structure. Figure 14 is an example of some impulse functions and their spectral

representations.

C. CONTINUOUS SYSTEMS

In this section an equation will be derived which will predict the frequency of

flexural vibration for the test structures. The geometry of the test structures and

the relevant equations will be presented followed by the derivation of the

frequency equation. The section will conclude with a comparison of the derived

equation to results obtained using shell theory.

The test structure was a thin cylinder with circular cross section. The

convention followed by Whitney [Ref.15] will be used to describe the coordinate

system and displacements of the elemental section of the test structure. This

convention is shown in Figure 15. The thickness is denoted by h, length by a, and

width by b. The radius to the reference surface (midplane of the thickness) is



denoted by R. The x coordinate is along the length of the tube, s along the

circumference, and z is in the thickness direction. Displacements u, v, and w

correspond to displacements in the x, s, and z directions respectively. The field

equations (equilibrium, strain-displacement, and constitutive) and laminated plate

theory will be used to derive the equation of motion of the test structure. From this

equation the equation for the flexural viorations of the test structure will be

derived. We are interested in deriving a simplified equation similar to the equation

derived from the Euler-Bernoulli beam theory. Essentially we are going to treat a

two dimensional laminated shell as a one dimensional homogeneous beam. The

field equations of interest are presented below.

The equilibrium equation in indicial notation is

a io ij + Xj = a 2 u/a t2 .

Strain-displacement relations for curved surfaces are derived by Timeshenko [Ref.

16] and are given below.

(X= au/ax

Es [R/(z+R)]av/as + w/R

f= aviax + [R/(z+R)]au/as

The parameter R is the radius to the reference surface. In this work the reference

surface was the midplane of the laminate. Stresses in a body are a function of the

applied forces and moments. The strain in a body is a function of geometry. These

equations are kinematical relations between strain and displacement, they are

independent of the material properties of the body. What relates stress to strain in

a body are the unique properties of the body's material. This relationship is called

the constitutive relationship. In indicial notation this is written as

-ij = Ciklf ki,
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where Cijkl is the fourth order stiffness tensor. This relationship may also be

written in the inverted form

ij =  Sijkl kl

where SIjkl is the fourth order compliance tensor. Tsai [Ref. 17] demonstrates how

these equations can be reduced using a contracted notation. The contracted

constitutive relations are

= Cijcj

Ei = Sijo j

where the equations are written in contracted form. The stiffness and compliance

terms no longer have their tensor properties , but now lend themselves to matrix

operations. The compliance matrix is the inverse of the stiffness matrix. With

these relations presented we are now ready to proceed with the derivation of the

flexural vibration equation.

By starting with the equation of motion derived by Whitney for a curved

laminated plate and following the same approach used by Whitney, a one

dimensional equation of motion for the transverse vibrations of the test structure

will be derived. Whitney's assumptions will be presented followed by the derived

equation of motion.[Ref. 15]

1.The plate is constructed of an arbitrary number of 2 - D anisotropic layers

bonded together. The orthotropic axes of material symmetry , however, of an

individual laver need not coincide with the x-s axes of the cylindrical plate.

2. The plate is thin, i.e., the thickness h is much larger then the other physical

dimensions.

3. The displacements u,v, and w are small compared to the plate thickness.

4. Inplane stresses c x, ( S, and c xs are small compared to unity.
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5. The radius of the plate R is much smaller than the thickness h.

6. In order to include inplane force effects, the nonlinear terms in the

equations of motion involving products of stresses and plate slopes are retained.

All other nonlinear terms are neglected.

7. Transverse shear strains c xz and t sz are neglected.

8. Tangential displacements u and v are linear functions of the z coordinate

(Kirchoff-Love hypothesis).

9. The transverse normal strain ( z is negligible.

10. Each ply obeys Hooke's law.

11. Rotary inertia terms are negligible.

12. There are no body forces.

13. Transverse shear stresses Oxz and o sz vanish at the surfaces z -h/2.

Using these assumptions the equation of motion for the transverse motion is:

a 2 Mx/aX 2 + 2a 2 Mxs/aXaS + a 2 Ms/as 2 - Ns!R + Nxa 2 W/aX2

+ 2 Nxs a 2w/axas + Ns a2w/ as2 + p = p a2 W/at2.

For purposes of the experiment the following additional assumptions are made

which further simplify the equation of motion.

14. Mxs = Ms = Ns = Nxs = p = 0

15. p = hp.

Where Mxs and MS are the moment resultants, Nxs and Ns are the stress

resulatants, and p is the surface stress resultant from classical plate theory. The

term po is the mass density per unit volume of the test structure. With these

assumptions the equation of motion reduces to

a 2 Mx/ax 2 = hpo 82 W/a/t 2.

From laminated plate theory the constitutive relations are
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N = AE + B

M=B( +DK
Where N is the column vector of the stress resultants, M is the column vector

of the moment resultants, and A. B, D, are the modified stiffness matrices, see

Jones [Ref. 18] for a definition of these matrices. For N = 0, these equations

reduce to

M = [D - BA-B]K.
The moment curvature relationship is now

K = d*M.
Where K is the column vector of the curvatures and d* is the inverse of the

bending stiffness matrix. The expanded bending stiffness matrix may be found in

Jones [Ref. 18]. The relationship between the curvatures and displacement w are

Kx = - 2 w/ax 2 ,

Ks = -a 2 w/aS 2 ,

Kxs = -2 a 2wlaxas.

From assumption 14 it can be seen that the curvatures are only related Mx. At this

point the transverse displacement w is still a function of x, s, and t. One more

assumption is needed to further reduce the equation of motion. This assumption is

given below.

16. The displacements due to d1 2 and d1 6 are negligible compared to the

displacements due to d1 1

The result of assumption 16 is that the displacement w can now be written as a

function of x and t only. For constant d, I the moment- curvature relation is now

-l/dI a 2w/aX2 = Mx

Substituting this relationship into the equation of motion results in the familiar
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Euler-Bernoulli beam equation

-1/d a 1 4w/8x 4 = hp 0a 2 w/8t 2 .

Assuming a solution of the form

w = w(x)eiw t,

time can be eliminated from the equation of motion. The resulting equation is a

statement of the eigenvalue problem for continuous systems.

d4w/dx4 -hpow 2 d, ,*w = 0

The solution to this problem results in an infinite set of values for the parameter

w 2 called the eigenvalues. The eigenvalues correspond to the natural frequencies.

If we define 8 in the following manner then w will be a function of 6, 0 will depend

on the boundary conditions.

04 = hpocW2d 1

The relationship between 0 and w is

wn = (0nl) 2 J 1/(hpod,1 *14).

The values of RnI are dependent upon the boundary conditions. In this experiment

the test structure was subject to clamped-free boundary conditions. The values of

OnI for the first three modes of vibration are given below.

611 = 1.875

021 = 4.694

031 = 7.855

Comparison of the derived equation to the equation for a homogenous

isotropic beam reveals a striking similarity. The frequency of vibration for a

homogeneous beam is given by the following equation derived from

Euler-Bernoulli beam theory.

w n = (nl) 2 .J E ml'
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Where E is Young's modulus of the material, I the area moment of inertia of the

structure. m the mass per unit length and I the length. The eigenfunctions, more

commonly called the normal modes, are the same as predicted from the

Euler-Bernoulli beam theory. The normal modes of vibration are

Wn(x) = Ar[(sin,8nl - sinhfnl)(sinnx - sinh6nx)

4- (cos,6nl + coshfnl)(cOsanx -coshnx)].

The magnitude of Ar is such that it satisfies the orthogonality condition

f m(x) Wm(x) Wn(x) dx = 0,

where m(x) is the mass per unit length. This completes the derivation using the two

dimensional laminated plate theory.

The presentaion given above has assumed that a shell could be treated as

a plate and in turn the plate treated as a beam. What follows is a justification of

the approach taken using results given by Donnell. A detailed description of shell

theory and the associated assumptions will not be presented. Instead, a qualitative

explanation of the highlights of the theory pertinent to this work will be given. This

method is more in the spirit of this work.

The most general type of structure is the shell. A plate is a special case of a

shell and a beam a special case of a plate. Exact solutions to the field problem

given by three dimensional elasticity are limited to certain special cases. In these

cases the equations are quite cumbersome and often not readily usable without the

aid of a computer. Shells are structures in which one dimension, the thickness, is

much smaller than the other two dimensions. This smaller third dimension has less

resistance to transverse displacement. It is these transverse displacements or

deflections with which we are mainly concerned. The Kirchoff-Love hypothesis

(straight lines normal to the midplane remain straight, normal to the
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midplane, and unchaged in length after deformation) simplifies the problem and

allows us to treat the real life three dimensional problem as a two dimensional

problem. With this assumption the two dimensional shell theory equations of

motion are governed by eighth order partial differential equations. These

equations require four boundary conditions along each edge of the structure. For

the case of a circular cylinder the solutions to the equations of motion can be found

in closed form. Even though this geometry is a special case of the general shell

theory its usefulness is quite obvious.

The general solution to the equations of motion for the circular cylindrical

shell is a double series solution. Hence tranverse displacements are governed by

the integer values of m and n, where m and n are the summation indices. The

solution is dependent upon the boundary conditions and will be harmonic functions

in m and n. Both m and n have physical interpretations. The value of m is the

number of axial half waves and n is the number of circumferential whole waves.

Corresponding to this are the circumferential modes of vibration and the axial

modes of vibration. An example of these can be seen in Figures 16 and 17. The

values of m go from 1 to - and the values of n go from 0 to -.

The modes excited will depend upon the force used to excite the structure.

Experience has shown that for values of n ; 2, the frequencies of vibration are

much higher than the lowest frequencies of vibration of a cylinder. For n = 0, the

cylinder may be treated as a membrane in certain special cases. A value of n = 1

is usually associated with the lower frequencies of vibration. However, for this to

be true we must investigate the form of the forcing function and the values of m. If

the value of the half wave length of the forcing function, that is the distance

between nodes if the forcing function is written as a sum of sines and cosines, is
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much greater than the diameter of the cylinder, than the cylinder may be treated as

a beam for certain values of m. If the wavelengths corresponding to the value of m

is much larger than the diameter of the cylinder, than the cylinder may be treated

as a beam. A detailed mathematical description of these results is given by

Donnell.[Ref. 19]

In this investigation the forcing function was a force impulse. The ideal

impulse contains all frequencies of equal magnitude. However, the ideal impulse is

not achievable in the laboratory. The second (II) and third curves (III) in Figure 14

give a representative look at the types of spectra seen in this work. The magnitude

of the frequencies above 500 Hz is small compared to the magnitude of the

frequencies below 500 Hz. This would seem to indicate for the structures tested in

this work, the participation of modes with frequencies higher than 500 Hz were

negligible compared to the modes below 500 Hz. The half wavelengths of the

frequencies required to excite the first three modes are on the order of the length

of the tube. Therefore, the treatment of the of the test structures as beams was

justified.
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III. EXPERIMENTAL PROCEDURE

A. INTRODUCTION
The introduction to this work has answered why we need to investigate the

modal parameters of a lightweight composite structure. The theoretical

background presented has given us insight into the theoretical analysis behind our

investigations. The experimental section will now present the "hows" of the

investigation.

The objective of the experiment was to determine natural frequencies and

mode shapes of a composite tube with clamped-free (cantilevered) boundary

conditions. Designing the experiment included selection of sensors, selection of

instrumentation, set up of thc test area, verification of instrument specifications,

determination of test procedures, and determination of a method for the analysis of

the data. The remainder of this chapter will cover these topics in detail.

B. STRUCTURES
Both aluminum and composite structures were studied. The aluminum

specimens had four different cross sections. The cross sections were rectangular,

circular, a square shell, and a circular shell. Figures 18 through 21 illustrate these

cross sections. In these figures 1 is the length, d is the depth, and b is the width.

The width of each specimen was kept constant throughout the testing. However,

the length of each specimen was varied in order to test different l/d ratios.

Different l/d ratios were stucied as a check on the range of applicability of

the beam frequency equation. Table 1 shows the area moments of inertia, the cross

sectional areas, lengths, and l/d ratios tested for each specimen. Also included in
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this table is the value for the Young's modulus of aluminum and the density of

aluminum. During testing the specimens were subject to clamped-free boundary

conditions. The equation used to predict the natural frequencies of the aluminum

specimen was the Euler-Bernoulli frequency equation. This equation is

fn = [(Rn l )2/2 7]J (EI)/(pAl4),

where A is the cross sectional area and p is the mass per unit volume.

The composite specimens tested were thin graphite/epoxy tubes, of circular

cross section. The tubes were made with Fiberite prepreg FX-13F76 and were

filament wound. The lamina stacking sequence in the first tube was [90,:.603,90].

This tube measured 129 cm long, with an inner diameter of 3.76 cm and an outer

diameter of 4.17 cm. Tube weight was 5.28 N. The lamina stacking sequence in

the second tube was [90,:-453 ,90]. This tube measured 107 cm long, with an inner

diameter of 3.81 cm and an outer diameter of 4.27 cm. Tube weight was 4.78 N.

Material properties used in the calculation of the stiffnes matrices and frequencies

are shown in Table 2. Also included in Table 2 are the linear combinations of the

unidirectional stiffnesses. The linear combinations are used to calculate the

transformed stiffnesses for angle plies. For a definition of the linear combinations

see Tsai [Ref. 20]. Table 3 shows the tube geometry and lay up for the tube 1 and

Table 4 shows the geometry and tube lay up for tube 2. The transformed

stiffnesses for each angle ply are shown in Table 5 for tube 1 and in Table 6 for

tube 2. Refer to Tsai [Ref. 20] for the calculation of the transformed stiffnesses

using linear combinations. From the transformed stiffnesses the A, B and D

matrices, described in the previous chapter, were calculated. The method used to

calcualte these matrices is described by Tsai [Ref. 20]. Calculations following this

method were then carried out on a spreadsheet. Table 7 shows the values of the
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d" matrix (see previous chapter) for tube 1 and Table 8 shows this matrix for tube

2. Table 9 shows the values of the predicted frequencies for tube 1 and Table 10

shows those for tube 2. In order to use the equation derived in the previous

chapter we must apply a geometric correction factor. This is applied because now

we are treating tubes not rectangular beams. The correction factor is the ratio

between the radius of gyration squared of a tube and the radius of gyration squared

of a rectangular beam. This is just like using different moments of inertia and

areas in the Euler-Bernoulli equation for isotropic beams. This correction factor is

given below.

K = (6R2 )/(h 2 )

Substitution of this factor into the frequency equation gives the result

fn = (flnl'27)J (6R2)/(h3d1 1 *p0 14)

This was the equation used to predict the frequencies of the composite tubes.

C. SENSOR SELECTION
As pointed out in the previous chapter, a transducer called an accelerometer

was used to measure acceleration and a transducer called an impedance head was

used to measure the applied force. Both of these instruments are piezoelectric

sensors. The piezoelectric sensor takes advantage of a unique property of quartz

crystals. When a force is applied to the crystal an electric potential is present

across the face of the crystal. This potential is proportional to the applied force.

Modern day piezoelectric sensors come in two types: charge and voltage. Both

types measure forces and motion using the piezoelectric effect, but differ in the

way the voltage signal is transmitted. A charge type sensor consists of the quartz

crystal and a mass (called the seismic mass) enclosed in a case. Attached to
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opposite faces of the crystal are leads which carry the high impedance voltage

signal. A voltage type sensor consists of the quartz crystal, seismic mass, and a built

in microelectronic charge amplifier. The function of the charge amplifier is to

convert the high impedance voltage signal to a low impedance voltage signal.

Sensor sensitivities are measured in in millivolts (mV) per engineering unit (g's or

Newtons (N)).

The advantages of the charge type sensor are simplicity of design, and

reliability. The sensitivity of the sensor is dependent upon the seismic mass and

the size of the crystal. The larger the the sensor the more sensitive the sensor is.

This is a disadvantage if the measured signal is small (< 10 mV) and the test

structure is lightweight. Charge type sensors also require special low noise cables

when measuring small output signals.

Voltage type sensors are good for measuring small signals from lightweight

structures. They can be made lighter in weight in order to have a negligible mass

damping effect upon the structure. Low noise cable is not required for these

sensors. However, the voltage type sensors are more complicated to

manufacturer and tend to be more expensive than charge type sensors. Sensors may

be attached to the test structure in a number of .vays. The three basic methods of

attachment are by stud, adhesive, or wax.

The weight of the sensors, the method of attachment, and sensitivity were the

most important criterion in selecting accelerometers for the experiment. The

priority in choosing the accelerometers was their weight. Typical accelerometers

weigh close to one half Newton and have sensitivities from 50 mV/g to 100 mV/g.

For this experiment accelerometers with a weight of .05 N or less were desired.

This size accelerometer would have a neglible mass damping effect upon the
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structure. Sensitivities of 5 mV/g or greater were required because the excitation

forces and resulting accelerations were small. Sensitivities any less than this value

would bring the signal down into the noise level. This sensitivity is very high for

accelerometers of such low weight. The standard accelerometer would not do the

job. Attachment of the sensors to the structure could not be allowed to appreciably

change the stiffness characteristics of the structure. Therefore, it was decided that

the accelerometers must be attached by wax. In addition to these requirements the

accelerometers needed to exhibit good frequency response from 5 Hz to 1KHz.

This frequency range includes the first five modes of vibration of the tube.

In modal tests a modal hammer is used to impart a force impulse to the test

structure. For this work a modal hammer was not available. In order to excite the

structure with an impulse and measure this input, an impedance nead was chosen

and modified to act as a modal hammer. An impedance head is a piezoelectric

transducer with a force transducer at one end and an accelerometer at the other

end. A force transducer consists of a piece of piezoelectric material, in this case

quartz, enclosed in a case. A force applied to the transducer creates a potential

proportional to the applied force. This is how force measurements were made. To

make a modal hammer a stud was attached to the force transducer end of the

impedance head. Striking the structure with the exposed end of the stud

produced an acceptable pulse as seen on an oscilloscope. The impedance head

sensitivity requirements were not as important as those for the accelerometers.

This is because the impedance heads interaction with the structure did not change

the mass or stiffness characteristics of the structure. However, the frequency

response of the impedance head did have to be approximately flat from 5 Hz to

1KHz.
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As the modified modal hammer a Piezotronics Mechanical Sensor (Model

288A11) was used to measure force. The impedance head had a nominal

sensitivity of 232.5 mV/N. Accelerometers with integratied microelectronic

amplifiers were chosen because they offered low mass, high sensitivity, and good

frequency response. The one chosen was a Piezotronics Quartz Accelerometers

(Model 309A). The accelerometers had a nominal sensitivity of 5 mV/g.

D. INSTRUMENTATION

The next step in conducting the experiment was to choose instrumentation for

signal conditioning and signal analysis. For signal conditioning (power sources for

the microelectronic amplifiers and secondary signal amplification) Piezotronics

Dual Mode Charge Amplifiers (Model 464A) were chosen. These amplifiers were

used for both the impedance head and the accelerometers. These units provided

sufficient power to the amplifiers and also allowed amplification of the input

signals from the sensors.

For signal analysis a Spectral Dynamics SD380 signal analyzer was used. The

signal analyzer is a microprocessor based analog to digital converter. The signal

analyzer samples the the incoming voltage and then computes a Fast Fourier

Transform (FFT) of the waveform. The signal analyzer can produce a time

representation of the waveform (similar to a digital oscilloscope), a frequency

representation (waveform spectrum), statistics of the waveform (pdf, cdf, etc.), a

power spectrum, Inverse Fast Fourier Transform (IFFT), and compute a transfer

function (TF). As shown in the previous chapter the FRF and the TF are of the

same form and represent the same information. The FRF measured in this

experiment was the inertance. The parameters will be extracted from the TF.
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Before the method of calculating the TF is defined, the FFT characterisdcs of

the signal analyzer will be presented. The signal analyzer has a 12 bit analog to

digital converter. Sampling rate was controlled by three factors. These were the

number of Ulnes of resolution desired, the maximum value of the frequency scale,

and the number of points per transform. The number of lines of resolution

determines the af of the frequency scale (Ex. 400 lines of resolution means the

frequency scale will be divided into 400 equally spaced frequency intervals from 0

I-z to the rn mxirmm chosen frequency). An example best shows how to deteremine

the sampling rate. The operator begins by choosing the the number of lines of

resolution and the maximum frequency. The signal analyzer has a predetermined

number of points per -ansform corresponding to the number of lines of resolution

chosen. For this example the rnax frequency is 1000 Hz and the number of lines of

resolution is 400. The corresponding number of sample points per transform is

1024. Begin by dividing f,= by the lines of resolution. This will give the

fundamental frequency of the Fourier Series representation of the sampled

waveform.

af = 1000/400 = 2.5 Hz

The reciprocal of this is taken to find the transform period.

T = 1/Af = .4 sec

Dividing the points per transform by the transform period will result in the

sampling rate.

1024/.4 = 2056 samples/sec

This is the sampling rate for this example. The sampling rate may be varied by

changing the maximum frequency or the number of lines of resolution.
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When operated in the TF role, the signal analyzer displays both the magnitude of

the TF and the phase of the TF. As shown in the previous chapter, force and

acceleration measurments were needed to calculate the TF (inertance).

Therefore, two inputs to the signal analyzer were required. These inputs were the

voltage signal from the impedance head (force measurement) and the voltage

signal from an accelerometer (acceleration measurement). The signal analyzer had

four channels for input, however only two channels were used. Channel A was

used for input from the impedance head and channel B was used for the inputs

from the accelerometers. In this arrangement a TF was computed between

channels B and A.

Experimentally determining the TF requires more than taking the ratio of the

output to the input at different frequencies. This is due to the presence of noise

and the randomness of the input signals. The data computed from the FFT of the

sampled waveforms can still be used to calculate the TF. This is done using the

autocorrelation function and its Fourier Transform, the auto spectral density; and

the cross correlation function and its Fourier Transform, the cross sprectral

density. These quantities are defined below.

Rx(r) = E[x(t)x(t+r)]

Rfx(r ) = E[f(t)x(t +r)J

Sx(w) =

Sfx(w) = ,{Rfx(r)}

E[ ] denotes the expected value of the function in the brackets. The

autocorrelation is a method of finding periodicity in a signal. The cross correlation

compares signals and enables us to find similarities between them. The use of
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these functions in determining a TF would require the solution of difficult integral

equations. It is in this light that their Fourier Transforms become extremely useful.

Beginning with our basic definitions of the TF and of the auto/cross sprectral

densities, we can derive what are known as the Weiner-Khinchine relationships.

The Weiner-Khinchine relationships are:

H(w) = Sfx(w)/Sf(w) = Sf(w)/Sxf().

The first relationship is the relationship used by the signal analyzer to compute the

TF. A detailed explanation of how the auto spectral density and the cross spectral

density are computed from the sampled waveforms is given by Newland [Ref. 21].

The auto sprectal density and cross spectral density are complex functions of

frequency. Therefore, the TF is also a complex function of frequency (we already

found this to be true in our theoretical analysis). The magnitude and phase angle

of the TF were found using the following equations:

ITFI = [JRe{Sfx}2 + Im{Sf} 2 I/Sf

= tan-1 [Im{Sfxj/Re{Sfx}j.

One measurement alone is not used to calculate the magnitude and phase of

the TF. The signal analyzer takes many measurements of the input signal and

averages these measurements. The method of averaging used in this experiment

was the sum method of averaging. The signal analyzer computes a FRF from the

first measurement. After making a new measurement, the arithmetic mean of the

real parts of the spectral densities of the two measurements is calculated. The

arithmetic mean of the imaginary parts is also calculated. From these mean values

a new TF is computed. These mean values are then stored in memory. This

procedure was repeated between the values in memory and the newly measured

values until the pre set number of measurements were made. The number of
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measurements made is called the count. The number of counts required to get

smooth FRF plots is determined empirically. In general, a greater number of

counts were required for large bandwidth tests as compared with small bandwidth

tests. For this experiment the number of counts used was 10. This number was

chosen because this number of averages gave excellent FRF plots.

E. CALIBRATION
To ensure good data during the experiment, the manufacturer's specifications

for the instrumentation required verification. The instruments requiring

verification were the signal analyzer and the amplifiers. Verification of sensor

sensitivities was also done.

The frequency response of the signal analyzer was the performance

parameter which required verification. The signal analyzer was rated to measure

the amplitude of the input signal to ± .5 dB over its entire operational frequency

range (0 Hz - 40 KHz). This response was verified by simulating acceleration

measurements and inputting them to the analyzer.

The signal analyzer was set up to operate in its waveform spectrum mode. The

simulated acceleration measurement was generated by a Wavetek 20 MHz

Pulse/Function Generator. The signal output by the Wavetek was a sinusoid of

varying frequency. The frequency varied from 1 Hz to 10 KHz for the verification

test. The signal was input to each channel of the signal analyzer and the measured

amplitude recorded. A LeCroy 9400A Dual 175 MHz digital Qscilloscope recieved

the same input signal as each channel of the signal analyzer. In this manner, the

measurements made by the signal analyzer could be directly compared to those

made by the digital oscilloscope, which is calibrated against an NIST (National

Institute for Standards and Technology) source by the manufacturer. secondary.
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Running two verification tests in this manner showed the signal analyzer measured

the input better than ± .5 dB over the tested frequency range. These results

indicated that the signal analyzer would give good frequency response in the

frequency range of interest (5 Hz - 1 KHz).

The frequency response of the amplifiers were rated at ± 5% of the full scale

input signal over a frequency range of near DC to 100 KHz. To check this

specification a similar test was run as done for the signal analyzer. A signal with

amplitude 10 mV was input to each amplifier. The amplifier gain was set to 50 and

the output signal from the amplifier was measured on an analog oscilloscope

(Tektronix 465 M). The frequency of the input signal varied from 1 Hz to 10 KHz.

The tests showed the amplification provided by the amplifiers was better than ±

5% of the full scale input signal. These results indicated the amplifiers were

performing satisfactorily.

Verification of sensor sensitivities was conducted using an Endevco Model

2270 piezoelectric calibration accelerometer. The reference (Endevco)

accelerometer was attached to an aluminum block attached to a shaker. Each test

accelerometer was also attached to the aluminum block. Attachment was done

using wax. The appropriate sensitivity settings and amplification settings were

made on the amplifiers for each accelerometer. The shaker was then turned on and

the gain adjusted. The acceleration measurements made by each accelerometer

were then recorded as the shaker frequency ranged from 5 Hz to 1 KHz. This

procedure allowed the verification of accelerometer sensitivities and their

nearly flat ( < 3% amplitude deviation) frequency response. The verification tests

showed that the sensitivities of the accelerometers were within 1% of the values

given by manufacturer. The verification tests also showed that the accelerometers
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did exhibit a nearly flat frequency. A copy of the Calibration certificate for the

accelerometer used in the testing is given in Appendix C.

Similar tests were conducted on the impedance head. Tests results showed the

impedance head sensitivity was within 1% of that given by the manufacturer. The

tests also verified the near flat frequency response of the impedance head. A copy

of the calibration certificate for the impedance head is in Appendix C.

F. TEST PROCEDURES

During testing the aluminum structures were supported by clamps and a vise.

The aluminum structures were modeled as two degree of freedom systems. This

model was chosen because only the fundamental frequency was of interest. The

test procedures followed on each aluminum structure were the same. The

procedures for the tests done on the rectangular cross section will be described.

The test piece was clamped in place for the first l/d given in Table 1. The

accelerometer was placed at the end of the test piece and was used as the reference

coordinate. The location half way between the cantilever and the accelerometer

was marked and used as the response location. The test piece was struck at the

response location ten times with the modal hammer. Ten was used because this

number of averages on the analyzer gave good FRF plots. When the analyzer was

done averaging the data, the data was transferred to a Compaq 386/20 personal

computer for analysis. The analyzer was then cleared and these procedures were

repeated for each I/d ratio and cross section

During testing the composite structures were supported with a

clamping mechanism machined from aluminum. Figure 22 is a photograph of the

test setup. Test procedures for both tubes were similar. A total of six tests were

done on tube 1 and eleven tests on tube 2. The procedure for testing tube 1 will be
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described followed by the procedures for testing tube 2 in some detail since more

degrees of freedom were used than for the aluminum specimen. This is because

mode shapes and higher mode frequencies were desired in the case of the

composites. Each degree of freedom corresponded to a measurement location.

The degrees of freedom were located at .20 m, .40 m, .60 m, .80 m, and 1.29 m from

the cantilever. Figure 23 is an illustration of the location of the degrees of

freedom. The numbers above the arrows in Figure 23 indicate the degree of

freedom/response coordinate of that location.

For all the tests the accelerometer was used as the reference coordinate.

The accelerometer was placed at location four. These tests were done to extract

the first three modes. The testing was done by striking the tube ten times at each

response coordinate. After ten impacts had been averaged on the analyzer the data

was transferred to the PC. The signal analyzer was then cleared and the these

procedures were repeated until each response coordinate had been impacted ten

times. Therefore, one test comprised of 60 impacts on the structure. In each test

there were five transfer mobility measurements (response coordinate and

reference coordinate at different locations) and one point mobility measurement

(response coordinate and reference at the same location). Test two was simply a

repeat of test one. This was done in order to verify the data taken in test one.

The degrees of freedom for tube 2 were located at .16 m, .32 m, .48 m, .64 m,

.80 m, and 1.07 m from the cantilever. Figure 24 is an illustration of the location of

the degrees of freedom. For all the tests the accelerometer was used as the

reference coordinate. The procedures followed in testing the second tube were the

same as for the first tube except the location of the accelerometer was not limited

to location four and a greater number of tests were conducted. The first five
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frequencies of the second tube were measured. For five tests the accelerometer

was placed at response location four. The accelerometer was placed at location

three for four tests and at location five four two tests. Varying the location of tJe

reference coordinate allowed the measurements to be cross checked.

Once the data had been transferred to the PC from the signal analyzer, a

modal analysis softwire package was used to extract the modal parameters. The

software package used in this work was EMODAL-PC v.2.75 by Entek. The

software utilized a least squares circle fit of the data to extract the modal

parameters. A description of the least squares circle fit is given by Ewins [Ref. 22].
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IN. RESULTS AND DISCUSSION

A. INTRODUCTION

In this chapter the results of the experiment will be presented. Numerical

results will be presented in table and bar chart format and include a comparison of

the predicted frequencies with those found in the experiment. Also included are a

sample of the first three measured mode shapes and the predicted mode shapes for

these modes. In addition, the test results for the aluminum structures will be

presented. The results obtained for these structures were used for qualitative

comparison to the results obtained for the composite structures. The chapter will

conclude with a brief discussion of the results.

B. RESULTS

Table 11 is a presentation of the test results for the aluminum test pieces.

Figures 25 through 28 are bar charts of percent error versus aspect ratio for

each different cross section of aluminum. The percent error is defined as

% Error = [1- (MEASURED FREQ/PREDICTED FREQ)].

The results for the rectangular beam agree well with the "ten" rule of thumb. That

is, if the aspect ratios of the structure are greater than ten, then the structure may

be treated as a one dimensional Euler-Bernoulli beam.

The solid circular cylinder does not follow this rule of thumb. The aspect ratio

approaches 50 before the one dimensional solution gives reasonable predictions.

The errors for the lower aspect ratios of the cylinder were less than that for the

same aspect ratios of the solid rectangular cross section. This is most likely due to

the fact that the lb ratio for the solid cylinder is larger than the l/b ratio for the
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solid rectangular cross section at the lower aspect ratios. As the aspect ratio of the

cylinder increases the decrease in error is not as great as in the rectangular cross

section. This may indicate that circular cross sections need to be treated differently

than rectangular cross sections.

The results for the square shell show similar trends as the solid cylinder. The

square tested had very thin walls (.9 mm). This may account for the smaller errors

at the lower aspect ratios. The one dimensional solution does not predict

reasonable frequencies until the aspect ratio approaches 90.

The circular shell follows trends similar to the square shell. These structures

are of the most interest because they are most like the composite structures tested.

The one dimensional solution for the circular shell does not predict reasonable

frequencies until the aspect ratio approaches 50 or 60. Rules of thumb for solid

rectangular beams now no longer seem to apply to circular cross sections or thin

shells. Based on these measurements and observations we would expect to see

similar trends for the composite tubes.

The equation used to predict the frequencies of the composite tube was

derived in the chapter describing the theoretical background and modified in the

experimental procedures chapter. This equation is repeated below.

fn [(tnl) 2/2r]j (6R 2)/(h3pod, "14)

This equation was also applied to the aluminum circular shell as a check that it

indeed reduces to the isotropic case. Table 12 shows the Q matrix symbolically for

the aluminum. Also included in the table are the valueg of the d* matrix,

described earlier as the inverse of the bending stiffness matrix, calculated for the

test specimen used. The value for Poisson's ratio used in the calculation was .25.

Table 13 shows the predicted frequencies of the aluminum circular shell based on
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the calculation of d1 1 *. It can be seen from these results that the frequency

equation used to calculate the frequencies of the composite tubes reduces to the

prediction made for the isotropic case.

Table 14 shows the tests results for composite tube 1. Figure 29 is a

bar chart of the percent error versus mode number for tube 1. Included in the

table are a comparison of the predicted frequencies with those measured. The

aspect ratio for this tube was 31. The results show that the frequency measured

was very close to the frequency predicted. The error being less then 3 % for all the

modes measured. We can not predict the effect of damping on the frequencies,

but we would expect that damping would reduce the frequency. The negative

percent error for modes two and three indicates that the measured frequency was

higher than the predicted frequency. This may be because the specimen tested had

longitudinal ridges running the length of the structure. The ridges were a result of

the curing process and act as stiffeners. These stiffeners would make the

fequencies of the structure higher.

Table 15 shows the test results for modes one, two and three for composite

tube 2. Figure 30 is a bar chart of the percent error versus mode number for

tube 2. The aspect ratio for this tube was 25. The test results show that the one

dimensional solution for all three modes is in the neighborhood of 18 %. Table 16

shows the test results for modes four and five for composite tube 2. The error in

the one dimensional solution for the fifth mode is also in the neighborhood of 18%.

However, the error in the one dimen .'nal solution for the fourth mode varies

from near 10 ,, to as high as 22 %. The frequencies measured for the fourth mode

for measurements two, four, and six were extracted using only one response

coordinate (response location three or five). Frequencies for the fourth mode
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could not be extracted from the other response coordinates. At these other

locations the FRFs showed no distinct peak in the neighborhood of the predicted

frequency. The frequencies extracted for modes one, two, three, and five were

based on measurements from all six respose coordinates. This was also the case for

composite tube 1.

Figures 31 and 32 present a comparison of the percent error in the first mode

between the aluminum circular shell and the composite tubes. Figure 31 is for an

LVd ratio of 25 (aluminum circular shell versus tube 2) and Figure 32 is for an l/d

ratio of 31 (aluminum circular shell versus tube 1).

C. DISCUSSION

Studying the results for the tests on the aluminum structures indicates that the

one dimensional solution to the frequency of vibration is an acceptable

simplification if the aspect ratios approach 50. The aspect ratios of the composite

tubes were 3 1 and 25 respectively. Based on these numbers alone we would not

expect the one dimensional solution to predict the natural frequencies well. This

was not the case. For composite tube 1 the one dimensional solution predicted the

frequencies quite well. For composite tube 2 the one dimensional solution

predicted the frequencies with quite a large error. We can compare directly the

aspect ratio for the composite tubes and the aluminum tube. For an aspect ratio of

25 the aluminum tube had an error of 12 %. The composite tube with an aspect

ratio of 25 had an average error of 18 %. This difference in perecentage error is

reasonable because the composite structure is very complex. In the composite

structure there is bending-twisting coupling, bending-extension coupling, and

interaction between the ply layers. For the aluminum structure there are none of

these complicating factors. We would therefore expect the error in the composite
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tube to be larger than in the aluminum tube. For an aspect ratio of 30 the

aluminum had an error of 10 c%. The composite tube with an aspect ratio of 31 had

an error of 2 %. This does not fit the pattern established by the aluminum test

structures and followed by composite tube 2. The error found in the composite tube

may improve quicker as the aspect ratio increases because the ratio of the in plane

modulus to the transverse modulus is much larger for the composite than the

aluminum. This effect should be further investigated as the aspect ratio increases.

More tests on similar structures should be done to compare to the results from this

test.

As the mode number increased in tube 2, the average error decreased. This is

because as the mode number increased the displacements due to these modes

decreased. Therefore, there was less out of plane displacement due to these

modes. However, as the mode number increases a point would be reached where

the distances between nodes were small enough that shear deformation effects

would be significant. This would increase the error of the one dimensional

prediction.

The difficulties encountered in extracting the fourth frequency in the second

composite tube is due to the location of the response coordinates. The response

coordinates were near the location of nodes of the fourth mode and near locations

of anti nodes for the third and fifth modes. This would account for the lack of a

distinct peak at the predicted frequency of the fourth mode.

Figures 33 through 38 are samples of the measured mode shapes and the

predicted mode shapes for modes one, two and three. These mode shapes were

from composite tube 2. This tube had an average error of 18 % in predicting the

frequencies. Examination of the measured mode shapes indicates that the shapes
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are very close to those predicted. The location of the nodes for the measured

modes shapes are in error by approxiamately 10 %. These figures indicate that the

shape of the displacement of the composite tube follows very closely to the one

dimensional solution. For larger aspect ratios this error may decrease similarly

to the prediction for the frequency.

Figure 39 is a representative example of the FRFs measured in this work.

Figure 40 is the circle fit of the FRF data in Figure 39. To execute a circle fit, data

fit bands were defined about the peaks of the FRF. The size and location of the fit

was dependent upon the sharpness of the peak. If the peak was symmetric about

the maximum value, then the fit band was symmetric about this frequency. For

peaks of this type the fit bands were three to five spectral lines to each side of the

maximum value. If the peak was skewed, then the fit band was also skewed. If the

peaked was skewed to the left, the right side of the peak would be very steep (have

a very large negative slope). On this side of the peak the fit band limit was three to

five spectral lines from the maximum value. On the skewed side of the of the

maximum value the fit band limit was five to fifteen spectral lines from the

maximum value. For peaks skewed to the right, the fit band limits were reversed.

For peaks which were not sharp, the fit band limits were placed five to fifteen

spectral lines from the maximum. Within the limits of the fit bands the real and

imaginary parts of the FRF were circle fit vsing a least squares method. The

resulting plot is the familiar Nyquist plot. From this fit the frequencies and

damping were found.
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V. SLIMARY AND CONCLUSIONS

The results of this investigation are summarized below.

1. The factors which determine whether a structure may be treated as a

one dimensional Euler-Bernoulli beam are the length to depth ratio and the length

to width ratio. Both of these ratios must be larger than ten in order to treat a solid

rectangualar cross section as a one dimensional problem.

2. When the cross section is no longer rectangular the aspect ratios must be

larger than ten in order to treat the structure one dimensionally. For solid circular

cross sections these ratios may need to approach 50. For shell structures these

aspect ratios may need to vary from 50 to 100.

3. The treatment of a composite shell as a one dimensional structure is

dependent on the aspect ratios. For composite shells aspect ratios may

need to approach 50 before the one dimensional solution gives reasonable

solutions.

Further study should continue using the Euler-Bernoulli model. Testing

should be done on structures with various aspect ratios. Tests should also be done

on structures of diffeerent cross sections. Included should be tests on elliptic,

rectangular. and other useful cross sections. Laminates of greater thickness should

be investigated in order to determine when the thickness becomes to great for this

model to predict accurately the natural frequencies and mode shapes. The

addition of shear deformation effects should be investigated to improve the model.

Testing done in this work was of relatively easy laminate stacking sequences. The

effect of unsymmetric laminate stacking sequence should be investigated. This is

important because then the A, B and D matrices do not have any zero value
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elements. This may violate the assumption that the displacements due to Poisson's

ratio terms are negligible. The laminated shell theory equations should be

investigated for further simplification. This may result in a simplified treatment

more accurate then the present model.

The unique properties of composite materials allows the designer to tailor the

material to his needs. This is done by determing the optimal angle orientation of

the fiber. For complex structures the designer must turn to Finite Element

Methods and the computer for computational power. In doing so, the designer may

lose their "feel" for the structure they are designing. What has been presented in

this work is a tool, when used within the limits of its approximations, which allows

the designer to keep their heuristcal "feel" to design . The results presented

provide for timely computation and sufficient accuracy for "back of the envelope"

calculations.
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Figure 9. SDOF model of accelerometer [Ref. 13]
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Fi p re 11. Two degree of freedom undamped system [Ref. 13]
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Figure 13. Force impulse response [Ref. 14]
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Figure 20. Aluminum test piece - box shell
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Figure 24. Degrees of Freedom/Response Coordinate locations - Tube 2
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Composite Tube 2.
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2.00 -
_____ _
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0.50 -___ Mode 3
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% Error [ 1-(MEASURED FREG/PREDICTED FREQ);

Figure 29. Percent Error vs Mode - Composite Tube 1, l/d =31
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Figure 30. Percent Error vs Mode - Composite Tube 2, L'd 25
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Figure 3 1. Comparison of Percent Error in Mode 1 between Aluminum Circular

Shell and Composite Tube for lid = 25
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Figure 32. Comparison of Percent Error in Mode 1 between Aluminum Circular

Shell and Composite Tube for l/d = 31
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Mode Shape - Mode 1
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Figure 33. Measured mode shape I
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Predicted Mode Shape - Mode 1
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Figure 34. Predicted mode shape I
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Mode Shape - Mode 2
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Figure 35. Measured mode shape 2
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Predicted Mode Shape - Mode 2
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Figure 36. Predicted mode shape 2
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Mode Shape - Mode 3
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Figure 37. Measured Mode Shape 3
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Predicted Mode Shape - Mode 3
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Figure 38. Predicted Mode Shape 3
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Figure 39. FRF plot for Aluminum Beam
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Figure 40. Circle fit of FRF data
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TABLE 1. DESCRIPTION' OF ALUMINUM TEST SPECIMEN

GEOMETRi I (m'4) A (m2) 1/d I (m)
Rectangle 1.12E-09 0.000335 10 0.064

20 0.127
30 0.191
50 0.318
100 0.635

Solid Cylinder 6.46E-09 0.000285 10 0.191

20 0.381
30 0.572
50 0.953

70 1.334

Square Shell 3.56E-09 0.0000646 10 0.191
20 0.381
30 0.572
50 0.953
90 1.715

Ci'cular Shell 1.03E-08 0.00C 863 10 C.318

20 0.635
25 0.794
30 0.953
40 1.270
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TABLE 2. MATERIAL PROPERTIES AND LINEAR COMBINATIONS

Type CFRP
Fiber AB-4
Matrix 976 Epoxy

Engineering constants ,GPa
Ex 138.00
Ey 8.96
nu/x 0.30
Es 7. 10

V/f 0.66
rho 1.60
ho,mm 0.125

Ply stiffness, GPa
Qxx 138.81
QYY 9.01
Qxy 2.70
Qss 7.10

Linear Combinations,GPa

Ul 59.66
U2 64.90
U3 14.25
U4 16.95

U5 21.35

84



' 4 4 t h 2 2 7 IWO N S M S E V I S I T I f S 'O F A C O t f - C I .
OF CIRCULAR CROSS SECTION(U) NAVAL POSTGRADAE51MNEE ARUETRSP8

UNCLASSIFIED MOTRYC TE E 9F/G 2212 U

NI.'.".D

I!u-



11111_25 : 1112

1111"2---5 IIII iiiii 8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A



TABLE 3. GEOMETRY AND LAYUP - TUBE 1

Length(m) 1.292

OD (M) 0.0417

ID (m) 0.0376
R (W) 0.0198
L/D 31

h (m) 0.00205
I (MA 4) 5.03E-08

A (mA2) 0.000255

z

h/2 90

I-/+ 603 I,

-h/2 _90
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TABLE 4. GEOMETRY AND LAYUP - TUBE 2

Length(m) 1.07
OD (m) 0.0427
ID (m) 0.0381

R 0.0202
L/D 25

h (m) 0.00229
I (mA4) 5.93E-08

A (mA2) 0.00029

z

h/2 __90

-/+ 453 h

-h/2 90$
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TABLE 5. TRANSFORMED STIFFNESSES - TUBE 1

Ply
Angle Transformed stiffness,GPa

90 QII 9.01
-60 Q11 20.08
60 Q1l 20.08

90 Q22 138.81
-60 Q22 84.98
60 Q22 84.98

90 Q12 2.70
-60 Q12 24.08
60 Q12 24.08

90 Q66 7.10
-60 Q66 28.48
60 Q66 28.48

90 Q16 0.00
-60 Q16 -15.76

60 Q16 15.76

90 Q26 0.00
-60 Q26 -40.45
60 Q26 40.45
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TABLE 6. TRANSFORMED STIFFNESSESS - TUBE 2

Ply
Angle Transformed stiffness,GPa

90 Ql 9.01

-45 Ql1 45.41
45 Qil 45.41

90 Q22 138.81

-45 Q22 45.41

45 Q22 45.41

90 Q12 2.70

-45 Q12 31.20

45 Q12 31.20

90 Q66 7.10

-45 Q66 35.61

45 Q66 35.61

90 Q16 0.00

-45 Q16 -32.45

45 Q16 32.45

90 Q26 0.00

-45 Q26 -32.45

45 Q26 32.45
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TABLE 7. d* MATRIX - TUBE 1

[d*]

0.1 0.01 -6E-18L 2 .36E -8 -6E 1 8 0 .0

TABLE 8. d *MATRIX - TUBE 2

[d*]

0.05 -0.01 1.28E-18L 00 0.01 -24E1
1.28E-18 -2.4E-18 0.05
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TABLE 9. PREDICTED FREQUENCIES - TUBE 1

MODE PREDICTED

UNDAMPED

FREQ (HZ)

1 13.05

2 81.79

3 229.02

TABLE 10. PREDICTED FREQUENCIES - TUBE 2

MODE PREDICTED

UNDAMPED

FREQ (HZ)

1 25.56

2 160.20

3 448.61

4 879.03

5 1453.12
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TABLE 11. TEST RESULTS - ALUMINUM SPECIMEN

GEOMETRY l/d L/b PREDICTED PREDICTED MEASURED DAMPING DELTA

UNDAMPED DAMPED FREG (HZ) RATIO %

FRED (HZ) FREQ (HZ)

RectangLe 10 1.20 1304.38 1304.17 915.20 0.013 29.82

I (W4) 20 2.40 326.10 325.99 249.17 0.018 23.57

1.12E-09 30 3.60 144.93 144.91 120.38 0.011 16.93

A (m2) 50 6.02 52.18 52.16 49.38 0.019 5.32

0.000335 100 12.05 13.04 13.04 12.93 0.018 0.84

SoLid Cylinder 10 10 376.54 376.21 286.68 0.030 23.80

I (Wf4) 2v 20 94.14 94.04 80.85 0.032 14.03

6.46E-09 30 30 41.84 41.82 37.58 0.021 10.14

A (m2) 50 50 15.06 15.05 14.20 0.032 5.63

0.000285 70 70 7.68 7.68 7.35 0.029 4.27

Square Shell 10 10 586.87 586.25 472.00 0.032 19.49

I (m4) 20 ZO 146.72 146.55 726.13 0.034 13.93

3.56E-09 30 30 65.21 65.16 60.28 0.027 7.49

A (m2) 50 50 23.47 23.45 22.04 0.035 6.00

0.0000646 90 90 7.25 7.24 6.94 0.030 4.13

Circular Shell 10 10 310.68 310.57 203.51 0.019 34.47

I (m'4) 20 20 77.67 77.64 66.59 0.019 14.23

1.03E-08 25 25 49.71 49.69 43.54 0.021 12.37

A (m2) 30 30 34.52 34.44 30.88 0.048 10.33

0.0000863 40 40 19.42 19.42 18.33 0.009 5.59

rho, AL (kg/r'3) 2700 DELTA 11- (MEASURED FRED/PREDICTED FREG)J

E, A( (GPa) 71
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TABLE 12. Q, D, AND d MATRICES FOR AL

[Q] ,A1
E(l-nUA 2) flu*E 0
nu*E E/(1-nu"2) 0

0 0 E/[ 2 * (1+nu)

E = 71 GPa

nu =.25

[Q] ,Al
7.57E+10 1.89E+10 0

.89 E + 1 7.57E+10

0 2 .8 4E+10

[DJ ,A
4.45 1.11 0
1.11 4.45 0

0 1.67

[d] ,AI
0.4 -0.06 0]

o00 0.24 01

0.0 0.60
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TABLE 13. COMPARISON OF BEAM THEORY AND MODIFIED PLATE

THEORY PREDICTED FREQUENCIES - AL

Circular Shell Mode 1

L/D PREDICTED PREDICTED DELTA

UNDAMPED UNDAMPED

FREQ (HZ) FREQ (HZ)

BEAM THEORY MODIFIED PT

10 310.68 310.55 0.04

20 77.67 77.64 0.04

25 49.71 49.69 0.04

30 34.52 34.51 0.04

40 19.42 19.41 0.04

PT = Plate Theory

DELTA % = [1 - (BEAM THEORY FREQ/MODIFIED PT FREQ)]
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TABLE 14. TEST RESULTS - COMPOSITE TUBE I

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA
UNDAMPED DAMPED FRED (HZ) RATIO %

FRED (HZ) FREQ (HZ)
1 13.05 13.03 12.72 0.047 2.42

13.05 13.03 12.72 0.047 2.42

[I/d = 31 [lb =31

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA
UNDAMPED DAMPED FREQ (HZ) RATIO %

FREQ (HZ) FRED (HZ)
2 81.79 81.77 82.02 0.019 -0.31

81.79 B1.77 82.02 0.019 -0.31

L/d = 31 [/b =31

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA
UNDAMPED DAMPED FREQ (HZ) RATIO

FREQ (HZ) FRED (HZ)
3 229.02 229.00 229.89 0.015 -0.39

229.02 229.00 229.89 0.015 -0.39

L/d = 31 L/b =31

DELTA % = [1- (MEASURED FRED/PREDICTED FREQ)]
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TABLE 15. TEST RESULTS - COMPOSITE TUBE 2

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA

UNDAMPED DAMPED FREQ (HZ) RATIO %

FRED (HZ) FREG (HZ)

25.56 25.55 20.80 0.033 18.58

25.56 25.55 20.80 0.033 18.58

25.56 25.55 20.85 0.033 18.39

25.56 25.55 20.85 0.033 18.39

t/d = 25 I/b = 25

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA

UNDAMPED DAMPED FREQ (HZ) RATIO %
FRED (HZ) FRED (HZ)

2 160.20 160.17 129.67 0.020 19.04

160.20 160.17 129.67 0.020 19.04

160.20 160.16 129.95 0.021 18.86

160.20 160.16 129.95 0.021 18.86

L/d = 25 l/b = 25

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA

UNDAMPED DAMPED FREQ (HZ) RATIO

FREO (HZ) FREO (HZ)
3 448.61 448.23 367.86 0.041 17.93

448.61 448.23 367.86 0.041 17.93

448.61 448.23 367.86 0.041 17.93

448.61 448.32 369.65 0.036 17.55

448.61 448.32 369.65 0.036 17.55

448.61 448.37 368.15 0.033 17.89

448.61 448.37 368.15 0.033 17.89

L/d = 25 L/b = 25

DELTA C- (MEASURED FRED/PREDICTED FRED)]
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TABLE 16. TEST RESULTS - COMPOSITE TUBE 2

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA
UNDAMPED DAMPED FREQ (HZ) RATIO %

FREQ (HZ) FREO (HZ)
4 879.03 878.65 783.89 0.029 10.78

879.03 878.66 783.89 0.029 10.79
879.03 878.43 784.29 0.037 10.72
879.03 877.60 698.64 0.057 20.39
879.03 879.03 684.20 0.002 22.16
879.03 879.03 727.22 0.002 17.27

t/d = 25 t/b = 25

MODE PREDICTED PREDICTED MEASURED DAMPING DELTA

UNDAMPED DAMPED FREG (HZ) RATIO %
FREG (HZ) FREQ (HZ)

5 1453.12 1453.02 1187.50 0.012 18.27
1453.12 1453.02 1187.50 0.012 18.27
1453.12 1453.02 1187.50 0.012 18.27

1453.12 1453.02 1190.00 0.012 18.10
1453.12 1453.02 1190.00 0.012 18.10
1453.12 1453.02 1194.93 0.012 17.76
1453.12 1453-02 1194.93 0.012 17.76

L/d = 25 l/b = 25

DELTA % = [1- (MEASURED FREQ/PREDICTED FREG)]
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8841/ Ca. ICP CALIBRATION DATA :cB
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